тангенс - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

тангенс - vertaling naar frans

ФУНКЦИИ, ВЫРАЖАЮЩИЕ ОТНОШЕНИЯ МЕЖДУ СТОРОНАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА
Тангенс; Косинус; Котангенс; Секанс; Косеканс; Синус (функция); Sinus; Tan; Тригонометрическая функция; Sin; Tg; Ctg; Cotan; Cosec; Csc; Sec; Синус; Формулы приведения; Тригонометрические таблицы
  • none
  • none
  • none
  • none
  • none
  • none
  • Рис. 4.<br>Тригонометрические функции острого угла
  • Определение тангенса. Марка СССР 1961 года
  • Рис. 2.<br>Определение тригонометрических функций
  • тригонометрической окружности]] с радиусом, равным единице
  • inline}}
  • Значения косинуса и синуса на окружности

тангенс         
м. мат.
tangente
tangente hyperbolique         
- гиперболический тангенс
boussole des tangentes      
- тангенс-буссоль

Definitie

ТАНГЕНС
(от лат. tangens - касающийся), одна из тригонометрических функций.

Wikipedia

Тригонометрические функции

Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус ( sin x {\displaystyle \sin x} );
  • косинус ( cos x {\displaystyle \cos x} );
производные тригонометрические функции:
  • тангенс ( t g x = sin x cos x ) {\displaystyle \left(\mathrm {tg} \,x={\frac {\sin x}{\cos x}}\right)} ;
  • котангенс ( c t g x = cos x sin x ) {\displaystyle \left(\mathrm {ctg} \,x={\frac {\cos x}{\sin x}}\right)} ;
  • секанс ( sec x = 1 cos x ) {\displaystyle \left(\sec x={\frac {1}{\cos x}}\right)} ;
  • косеканс ( c o s e c x = 1 sin x ) {\displaystyle \left(\mathrm {cosec} \,x={\frac {1}{\sin x}}\right)} ;
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются tan x {\displaystyle \tan x} , cot x {\displaystyle \cot x} , csc x {\displaystyle \csc x} . До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах, но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках ± π n + π 2 {\displaystyle \pm \pi n+{\frac {\pi }{2}}} , а у котангенса и косеканса — в точках ± π n {\displaystyle \pm \pi n} .
Графики тригонометрических функций показаны на рис. 1.

Voorbeelden uit tekstcorpus voor тангенс
1. Было у Ирины одно сложное задание - подсчитать тангенс угла между двумя плоскостями.
2. Иду по проходу, читая клички быков: Премьер, Хитачи, Тангенс, Мегрэ, Гай, Солярис...
3. Ведь тангенс при девяноста градусах, взмыв к бесконечности, тут же и рушится в пропасть минус бесконечности.
4. "Параллельные - значит, не пересекаются, тангенс - это не котангенс, а пифагоровы штаны вообще во все стороны равны, - мы напряженно восстанавливали в памяти свой школьный багаж.
5. Тангенс неизвестного значения РГ Андрей Александрович, Союз ректоров Москвы принял решение, что в этом году все столичные вузы в качестве вступительного экзамена по истории будут принимать только результаты ЕГЭ.